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 Abstract—Soil Moisture is an important variable for 

hydrological, meteorological and agricultural studies and 

applications. The Soil Moisture Operational Products System 

(SMOPS) was developed by the National Oceanic and 

Atmospheric Administration (NOAA)-National Environmental 

Satellite, Data, and Information Service (NESDIS) to 

operationally provide an integrated satellite soil moisture data 

product. The Advanced Microwave Scanning Radiometer 2 

(AMSR2) soil moisture retrieval is an important component of 

the currently operational SMOPS. This study is proposed to 

refine the AMSR2 data product using an optimal machine 

learning model, and this first paper of the two-part series is to 

intercompare the six commonly-used machine learning models 

including multiple linear regression (MLR), Regression Tree 

(RRT), Random Forest (RFT), Gradient Boosting (GBR), 

Extreme Gradient Boosting (XGB) and Artificial Neural 

Network (ANN). Results indicate that all of the six approaches 

can preserve the reference data information beyond the training 

time period, which ensures them to predict past and future 

satellite retrievals without a new training procedure. Relative to 

other models, the XGB method is more successful to respect to 

the reference data Soil Moisture Active Passive (SMAP) and the 

in-situ observations from the U. S. Department of Agriculture 

Soil Climate Analysis Network (SCAN). It has a good implication 
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on the implementation of the XGB model to refine the AMSR2 

soil moisture retrievals in the second paper. 
Index Terms— AMSR-2 Soil Moisture, Soil Moisture Operational 

Products System (SMOPS), Machine Learning  

I. INTRODUCTION 

S
 oil moisture (SM) plays a central role in the terrestrial 

water,  biogeochemical and energy cycles through 

constraining the partitioning of incoming radiation into 

latent and sensible heat-fluxes [1-2]. A wetter soil moisture 

condition generally makes plant growth better through altering 

soil physical properties, physiological hierarchy and soil 

biogeochemistry, whereas low SM value reduces evaporative 

cooling and in turn rising temperature [3-5]. Given the 

positive SM-precipitation feedback at a continental scale, 

precipitation is generally decreased under a dry SM condition 

[6]. Those changes in evapotranspiration and precipitation 

trends could promote the uncertainties of monitoring and 

predicting rainfall, drought and flood events. Low SM also 

contributes to fire occurrence, development and propagation 

through influencing plant productivity and live fuel moisture 

[7-9]. Accurate understanding the SM status would thus 

benefit the meteorological, hydrological, climatological and 

environmental studies and applications.    

Unlike the ground in situ measurements, microwave 

remote sensing offers SM observations with sufficient 

coverage and consistency at regional and global scales. Links 

between soil dielectric constant and soil emissivity provide a 

direct manner to retrieve SM using passive microwave 

satellite observations [10-11]. The active microwave radar 

uses an electromagnetic pulse to sense the land surface 

backscatter that is primarily affected by surface roughness and 

geometric [12], while the passive microwave radiometer 

receives the land surface emission impacted by the physical 

temperature and emissivity of the Earth [10-11]. The 

traditional microwave satellite SM retrieval algorithms 

typically include a radiative transfer model linking brightness 

temperature (Tb) and soil dielectric constant and a dielectric 

mixing model calculating soil moisture [13].  

The first-generation retrieval algorithms estimate soil 

moisture through minimizing the difference between modeled 

and observed Tb in either the vertical (V-pol) or the horizontal 

(H-pol) polarization. However, such SM retrieval models 

including the Single Channel Algorithm (SCA) and the Land 

Surface Microwave Emission Model are significantly 

impacted by surface temperature, vegetation optical depth 
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(VOD) and land surface roughness generally assigned as 

constant on the basis of ancillary data [11, 14]. Given the 

passive microwave satellite sensors can provide multi-

frequency Tb measurements, additional observations were 

used to represent the parameters relevant to surface SM 

condition. This kind of evolution has been reflected in the 

Dual Channel Algorithm and the Land Parameter Retrieval 

Model [15-16]. These advanced algorithms have reduced 

uncertainties in soil moisture retrievals by obtaining surface 

temperature from either high frequency microwave Tb 

observations or thermal infrared ancillary data. However, 

these physical models still suffer from inadequate 

representativeness of retrieving parameters [17-18].  

Machine learning models have been broadly employed in 

satellite SM estimation [19-21] in the past decade. These 

artificial intelligence techniques use high-quality soil moisture 

datasets as the base reference to train models for satellite SM 

retrievals. Based on experiment results from test sites and 

watershed experiment, the linear regression method was 

initially involved to build the relationships between Tb and 

SM without considering ancillary information [22-23]. Apart 

from the traditionally physical SM retrieval model, these 

attempts offered another way to estimate soil moisture. The 

earlier-generation machine learning algorithms, such as 

Random Forest and Regression Tree, were not designed with 

the relevant architectural elements to enable automatic 

extraction of features, but they can still produce the fairly 

accurate satellite SM retrievals [21, 24-26]. Relatively, tree 

boosting has shown the state-of-the-art results [27]. It 

considers the errors of the previous trees and then uses 

sequential learning to make weak trees become as strong 

learners. Gradient Boosting and Extreme Gradient Boosting 

approaches have presented the advantages including high 

speed, excellent efficiency and great accuracy in satellite SM 

retrievals [7, 28]. The new generation of machine learning 

with the term deep learning is making major advances in the 

ability of neural networks to automatically capture data 

distributions, allowing to empower satellite SM retrieval 

capabilities [29-30]. Artificial Neural Network is a typical 

deep learning model to create collection functions of 

connecting neurons. Its advantages of storing information and 

having a distributed memory could benefit the development of 

long-term SM data products [32]. 

The Advanced Microwave Scanning Radiometer 2 

(AMSR2) onboard the Global Change Observation Mission 

1st-Water (GCOM-W) satellite was launched by the Japan 

Aerospace Exploration Agency (JAXA) in 2012 [32]. AMSR2 

soil moisture data product is an important component of Soil 

Moisture Operational Product System (SMOPS) that is 

developed by National Oceanic and Atmospheric 

Administration (NOAA) to offer a one-stop microwave 

satellite SM data product [33-35]. Refinement of the currently 

operational NOAA AMSR2 soil moisture datasets can not 

only further improve the SMOPS quality, but also potentially 

benefit the third generation of AMSR mission series 

(AMSR3). This study aims to address the open scientific 

questions including 1) there are many machine learning 

models used to retrieve satellite soil moisture in the past 

decade [29-30], which is the optimal approach for AMSR2 

SM retrieval? 2) can machine learning reasonably estimate 

satellite SM without utilizing the retrieving parameters 

subjectively used in the physical models, such as VOD and 

surface roughness? 3) does the refined AMSR2 SM have a 

better performance than the currently operational AMSR2 data 

product? 4) is the refined AMSR2 comparable to the latest 

version (V8.0) Soil Moisture Active Passive (SMAP) SM 

product? This first paper of the two-part series is to address 

the first two questions, while the latter two will be tackled in 

the second part.  

The reminder of this paper proceeds as follows: Section 2 

contains descriptions of the primary data sets used here. The 

strategies of training and comparing machine learning models 

are introduced in Section 3. The results focused on model 

evaluations and differences in model performance are 

provided in Section 4. The discussions relevant to interpret the 

validation results and model comparisons are shown in 

Section 5. And brief summary is finally given in Section 6. 

 

II. DATASETS 

Datasets leveraged for building machine learning models 

include multifrequency microwave Tb observations from 

AMSR2, the Version 8.0 SMAP SM retrievals, Normalized 

Difference Vegetation Index (NDVI) of the Moderate 

Resolution Imaging Spectroradiometer (MODIS), and 

ancillary maps for characterizing land surface conditions. In 

situ SM observations from the Soil Climate Analysis Network 

(SCAN) network are used to validate the trained machine 

learning models.      

2.1 AMSR2 Brightness Temperature 

The AMSR2 onboard the GCOM-W1 satellite is a total 

power microwave radiometer that can detect the microwave 

energy emitted from the Earth surface at 6.925, 7.3, 10.65, 

18.7, 23.8 and 36.5 GHz in vertical and horizontal 

polarizations. The corresponding footprint ground resolutions 

with Cross-track (km) × Along-track (km) are 35×62, 34×58, 

24×42, 14×22, 15×26 and 7×12 [32]. The AMSR2 frequency 

set is identical to that of AMSR for Earth-Observation System 

(AMSR-E) except the 7.3GHz channel for Radio Frequency 

Interference (RFI) mitigation purpose. The 7.3 GHz Tb 

observations are thus excluded to enable this study eventually 

benefit the long-term AMSR mission series including the 

decommissioned AMSR-E, the currently operational AMSR2 

and the upcoming AMSR3. Recent study has revealed that the 

Tb measurements at 23.8 GHz provide meaningful and 

valuable information on total precipitable water estimation 

over the land areas [36]. The 23.8 GHz Tb observations are 

thus excluded to make the refined AMSR2 SM retrievals 

independently offer the valuable information without 

involving satellite precipitation retrieval information.  

The GCOM-W1 satellite equatorial crossing time is 

13:30 and 1:30 ±15 mins in the ascending and descending 
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tracks, respectively. Given AMSR2 rotation takes 1.5s and its 

ground speed is about 6.76 km/s, the intervals at the swath 

center are about 10 km [32]. The ascending and descending 

AMSR2 Tb observations at 6.925 GHz, 10.65 GHz, 18.7 GHz 

and 36.5 GHz in dual polarizations over the 3 July 2012-31 

December 2021 time period are used in this paper. The 

original footprint Tb data are gridded to 25 km spatial 

resolution over the global domain using the nearest neighbor 

method. The corresponding RFI flags were applied to quality 

control AMSR2 Tb observations before they were used to 

train machine learning models and produce SM retrievals.  

2.2 SMAP Soil Moisture Data Product    

The National Aeronautics and Space Administration 

(NASA) SMAP was specifically designed to acquire surface 

soil moisture conditions at high accuracy on the basis of L-

band signals [37]. It was successfully launched in January 

2015 and began to provide the global SM science data in April 

2015. Based on the L-band radiometer and radar sensors, the 

SMAP mission was targeted to measure SM for the top 5 cm 

surface layer with retrieval errors smaller than 0.04 m3/m3 

[37]. After loss of the L-band radar, the SMAP has been 

continuously providing L-band Tb measurements on the 

global domain, allowing to generate high quality SMAP 

passive SM data product as of 2015 [38]. Benefiting from the 

Dual Channel Algorithm, the most recent version (V8.0) of 

Level-3 SMAP soil moisture data showed better data quality 

than previous versions retrieved by the Single Channel 

Algorithm. The original SMAP Level-3 SM retrievals from 

2016 to 2021 were re-gridded to 25 km spatial resolution 

using nearest neighbor approach. SMAP V8.0 data are 

accessible from National Snow and Ice Data Center 

(https://nsidc.org/data/spl3smp/versions/8).    

2.3 Ancillary data 

The Tb observations are dependent on target variables 

including land surface roughness, vegetation condition, soil 

moisture status and physical temperature of the soil and 

vegetation [39]. It thus needs to adequately represent those 

parameters while training machine learning models. 

Specifically, global soil texture map from the Food and 

Agriculture Organization of the United Nations (FAO) is used 

to characterize the soil retention capacity for water and the 

spatial variations of soil type. According to sand, silt and clay 

proportions, global soils are classified into 9 soil types in the 

FAO texture map [40]. The 1 km FAO texture map was 

derived from FAO/United Nations Educational, Scientific and 

Cultural Organization Soil Map of the World at 1: 5,000,000 

scale (https://www.fao.org/soils-portal/data-hub/soil-maps-

and-databases/faounesco-soil-map-of-the-world/en/), and then 

upscaled to 25 km spatial resolution.  

The annual Visible Infrared Imaging Radiometer Suite 

(VIIRS) land cover type maps and the MODIS NDVI datasets 

were used to represent the underlying vegetation conditions. 

The land surface type team of NOAA-Center for Satellite 

Applications and Research (STAR) has developed global 

annual surface type classification maps using previous one or 

more years of VIIRS surface reflectance, brightness 

temperature and vegetation index data [41]. Following the 

International Geosphere-Biosphere Program (IGBP) 

classification scheme, the annual VIIRS global land cover 

maps at 1 km spatial resolution offer 17 surface type classes. 

The composite 16-daily MODIS NDVI observations at 500 m 

resolution from either Terra or Aqua satellite were combined 

to develop 8-daily NDVI datasets. MODIS NDVI data are 

accessible from the NASA EARTHDATA 

(https://www.earthdata.nasa.gov/), while  VIIRS land cover 

maps can be obtained from the NOAA Comprehensive Large 

Array-data Stewardship System 

(https://www.avl.class.noaa.gov/saa/products/welcome).   

2.4 SCAN Soil Moisture 

The U. S. Department of Agriculture Soil Climate 

Analysis Network (SCAN) provides ground SM observations 

over agricultural areas of the United States. Hourly SM 

measurements are automatically screened for the limits of the 

sensors through measuring the dielectric constant of the soil 

[42]. In this paper, the SCAN SM observations were quality 

controlled by detecting problematic datasets. SCAN offers soil 

temperature measurements, allowing to exclude SM 

measurements at corresponding sites and soil layers under 

frozen conditions [34-35]. We also excluded SM observations 

outside of the physically possible range of 0~0.6 m3/m3. 

Finally, the 0~5 cm SM measurements over the 2012-2021 

time period from 52 SCAN sites within the contiguous United 

States (CONUS) were chosen by excluding that with fewer 

than 3-year of observations.  

III. METHODOLOGY 

3.1 Machine Learning Models 

This study is aimed to assess the AMSR2 SM datasets 

retrieved by the six commonly-used machine learning models, 

including Multiple Linear Regression (MLR), Regression Tree 

(RRT), Random Forest (RFT), Gradient Boosting (GBR), 

Extreme Gradient Boosting (XGB) and Artificial Neural 

Network (ANN). The MLR is the simplest regression 

approach to evaluate the relationships between more than 2 

independent variables and one dependent variable through 

fitting a line. MLR method was primarily involved in SM 

retrieval studies from late 1970s to the end of 20th century 

[22-23].  

RRT uses a tree structure to represent attribute 

judgments [43]. Each leaf node characterizes a prediction 

result, while each branch corresponds to a fitting model. By 

contrast, RFT is an ensemble machine learning method 

assembling a large number of estimators [44]. The Law of 

Large Numbers ensure that the RFT does not overfit, while the 

input feature space is divided into many regression trees. The 

RFT uses randomized, adaptive and decorrelated features to 

build better relationships under highly nonlinear conditions 

[44]. Both RRT and RFT have been widely used in satellite 

https://www.earthdata.nasa.gov/
https://www.avl.class.noaa.gov/saa/products/welcome
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SM retrievals, as they are easily implemented and take more 

advantageous for addressing large scale problems [21, 24-26].  

Tree boosting is capable of capturing complex patterns 

and thus has shown state-of-the-art features [27]. GBR uses 

either learning rate or the number of components to control the 

degree of fit. The two regularization parameters affect each 

other with the smaller component size resulting in learning 

rate increase [45]. The ideal solution is to optimize both by 

jointly minimizing a model selection criterion. However, it is 

worth noting that a greater component size produces a 

proportionate increase in computation [45].  

Relatively, XGB is a salable machine learning approach 

for tree boosting. Benefiting from utilizing a cost function to 

control model complexity, the model variance could be 

reduced to make the trained model simpler and in turn to avoid 

overfitting. The XGB model can scale billions of examples on 

a memory-limited platform since a novel tree learning 

algorithm and a theoretically justified weighted quantile 

sketch procedure are used to handle spare data and instance 

weights [27].   

Unlike the above five models, ANN has an unsupervised 

feature, though it is also a supervised learning method to 

connect neurons. It is a nonlinear mathematical computing 

system that is capable of identifying complex nonlinear 

relationships between train- and reference-data [46]. The ANN 

finds the weight for each network through minimizing a loss 

function representing the difference between data and 

predictions [30]. It is thus more efficient and more widely-

used when the process characteristics are difficult to be 

physically described [46].  

3.2 Machine Learning Framework 

The input ancillary datasets of land cover map and NDVI 

data are relevant to VOD, vegetation water content and 

surface roughness, while soil type map represents the soil 

retention capacity and the ratios of soil clay and silt. Those are 

the critical parameters for the traditionally physical SM 

retrieval models [11,14,37]. Figure 1 shows the specific input 

data collection, as well as training and testing procedures for 

each of the six commonly-used machine learning models. A 

descending and an ascending model are separately trained 

using the corresponding 6.925, 10.65, 18.7 and 36.5 GHz 

AMSR2 Tb observations in dual-polarization, while the 

corresponding pass-set SMAP SM data products are used as 

base references. The microwave emission is primarily relying 

on soil dielectric constant that links soil moisture, allowing to 

use X-band (8.0-12.0 GHz) and C-band (4.0-8.0 GHz) satellite 

measurements to retrieve SM in a direct manner [11, 14]. The 

6.925 GHz and 10.65 GHz Tb were thus included to respect 

the physical retrieval theory. The 36.5 GHz is the most 

appropriate microwave frequency for representing land 

surface temperature conditions, while the 18.7 GHz is used to 

characterize water surfaces and land surface with high soil 

moisture [47-48]. All Tb data used in this study were quality 

controlled by the corresponding RFI flags.  

 Based on the assembled ascending and descending 

datasets, AMSR2 SM retrieval models are developed through 

XGB, ANN, RRT, MLR, RFT and GBR respectively, which 

were optimized separately before training. Based on the 

training data from 2019 to 2021, the daily AMSR2 SM data 

were developed by combining the ascending and descending 

retrievals (Figure 1). The daily SMAP combined SM 

observations over the 2019-2021 period and the 2016-2018 

period were used to evaluate model performances during the 

training and testing time period, respectively. The year-based 

cross-validation method ensures that the established machine 

learning models are evaluated with the reference data from 

different time period [21]. A model with a good “memory” 

can be easily backward implemented to generate AMSR2 soil 

moisture in earlier time period. In addition, an independent 

validation against SCAN measurements was also conducted to 

further evaluate the performance of each model. Considering 

the speed and efficiency, the study area in this paper is 

focused on the region domain from -130°E, 20°N to -60°E, 

60°N.  

Finally, six kinds of AMSR2 SM datasets are generated 

by the corresponding machine learning models, including 

XGB, ANN, RRT, MLR, RFT and GBR. The same input 

variables, reference data and training strategy could highlight 

the model differences in terms of the agreements with the 

reference SMAP data during the training and testing period 

and the validations with in situ observations.  

IV. RESULTS 

4.1 Evaluation with SMAP Data 

The root-mean-square difference (RMSD) is an 

extensively used metric to evaluate the predicted soil moisture 

retrievals versus the reference data [21, 49]. Based on the 

daily SMAP observations, Figure 2 shows the temporal 

RMSD distributions for the daily AMSR2 soil moisture 

retrievals based on each machine learning model over the 

2016-2021 time period. Areas shading in red color indicate 

that model has a modest performance with higher RMSD 

values, while those in blue color highlight that the machine 

learning models are successful with respect to the reference 

data. Relatively, greater RMSD values (>0.1 m3/m3) are found 

for the RFT not only in the eastern densely-vegetated areas, 

but also in the western sparsely-vegetated areas. Compared to 

the RFT, the MLR, ANN and RRT show little improvements 

with the significant SMAP-based differences primarily 

distributed in the eastern and northern areas. Both tree-

boosting models exhibit much better performance with the 

higher RMSDs mainly in the northern areas, while the XGB 

has the most successful behavior in the 6 machine learning 

methods. Specifically, the study area domain-averaged 

RMSDs for XGB, ANN, RRT, MLR, RFT and GBR are 0.064 

m3/m3, 0.093 m3/m3, 0.087 m3/m3, 0.093 m3/m3, 0.097 m3/m3, 

0.078 m3/m3, respectively. 
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Figure 1. A schematic framework of comparing the commonly-used machine learning models. The abbreviation RFI indicates 

Radio Frequency Interference, while the abbreviations XGB, ANN, RRT, MLR, RFT and GBR are Extreme Gradient 

Boosting, Artificial Neural Network, Regression Tree, Multiple Linear Regression, Random Forest and Gradient Boosting 

machine learning models, respectively.   

Figure 2. With respect to the daily SMAP soil moisture datasets, the RMSD spatial patterns for the 6 machine learning models 

over the 2016-2021 time period. The abbreviations XGB, ANN, RRT, MLR, RFT and GBR indicate Extreme Gradient 

Boosting, Artificial Neural Network, Regression Tree, Multiple Linear Regression, Random Forest and Gradient Boosting 

machine learning models, respectively.   
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Figure 3. The Cumulative Distribution Functions (CDFs) of 

the SMAP-based root-mean-square difference (RMSD) values 

for the 6 machine learning models. CDF for the training time 

period (2019-2021) is highlighted in solid line, while the 

dotted line highlights the CDF for the testing time period 

(2016-2018). 

In probability theory and statistics, the Cumulative 

Distribution Function (CDF) is an important method to 

describe the variable distribution with a given probability less 

than or equal to a particular threshold. Based on the daily 

SMAP data, Figure 3 shows the CDFs of RMSDs over the 

study area for each of the six machine learning models. The 

solid and dotted lines in the same color indicate the CDFs for 

the same approach during the training time period from 2019 

to 2021 and the testing time period between 2016 and 2018, 

respectively. Curves shifting toward left mean better 

performance in reducing the probability of larger RMSD 

values, whereas shifting toward right indicate high probability 

yielding modest behavior. It is consistent with Figure 2 that 

the XGB model shows the best performance, following by 

GBR, RRT, ANN, MLR, whereas the RFT has a higher 

probability to show larger RMSD values. It is worth to note 

that the dotted lines are basically overlapped with the 

corresponding solid lines in the same color. This suggests that 

all of the six models can be implemented to predict the 

AMSR2 soil moisture beyond the training time period without 

retraining the new models. This characteristic is very 

important to demonstrate their feasibility and generalizability 

for the operational satellite SM retrievals, which can ensure 

the machine learning-based soil moisture data product to meet 

the latency requirements of the operational users.  

 
Figure 4. With respect to the quality-controlled daily SCAN soil moisture observations, correlation coefficients for (a) XGB, 

(b) ANN, (c) RRT, (d) MLR, (e) RFT and (f) GBR over the July 2012-December 2021 period. 
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Figure 5. With respect to the quality-controlled daily SCAN soil moisture observations, RMSEs (m3/m3) for (a) XGB, (b) ANN, 

(c) RRT, (d) MLR, (e) RFT and (f) GBR over the July 2012-December 2021 period. 

4.2 Validation with In Situ Observations 

Selecting performance metrics is typically relying on the 

nature, variable and characteristics. A single metric can not 

comprehensively assess all the variable attributes, as each 

metric is only sensitive to partial features of environmental 

variables [50]. Based on the quality-controlled SCAN soil 

moisture measurements, the machine learning approaches 

were evaluated by three metrics including correlation 

coefficient (r), root mean square error (RMSE) and unbiased 

RMSE (ubRMSE). The correlation coefficient measures the 

dynamic trend agreements between AMSR2 SM retrievals and 

the quality-controlled SCAN measurements from July 2012 to 

December 2021 (Figure 4). Sites in warm color indicate weak 

correlations, while in cold color highlight strong positive 

correlation relationships. Compared to the other five models, 

the RFT shows the modest performance with the lowest r 

value (0.249) over the CONUS domain (Table 1). This 

situation can be improved by the MLR (0.359), ANN (0.365) 

and RRT (0.416), whereas they still present unexceptional 

behaviors primarily in the eastern areas. Relatively, the GBR 

performs much better with the CONUS domain-averaged r 

value reaching to 0.553, while the XGB (0.574) yields the 

strongest agreement with SCAN observations in the 6 cases 

(Table 1).  

The RMSE is a frequently-used metric that measures the 

differences between model estimates and the observed values. 

Here, the RMSE represents the prediction errors for each 

machine learning models, while applying them to retrieve 

AMSR2 SM data. With respect to the quality-controlled daily 

SCAN soil moisture observations, Figure 5 shows the 

temporal RMSEs for each of the six approaches over the July 

2012-December 2021 time period. Sites in blue and red colors 

indicate smaller and greater errors, respectively. In the 6 cases, 

the RFT yields the highest CONUS domain-averaged RMSE 

value, reaching to 0.096 m3/m3 (Table 1). Unexceptional 

behaviors are also found for MLR (0.091m3/m3), ANN (0.086 

m3/m3) and RRT (0.084 m3/m3) with higher RMSE values in 

the eastern CONUS areas. This situation can be significantly 

improved by GBR (0.076 m3/m3) and XGB (0.074 m3/m3). 

Compared to the other five models, the XGB more 

successfully respects to the quality-controlled SCAN SM 

observations with showing the lowest CONUS domain-

averaged RMSE values (Table 1).       
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In general, satellite SM retrievals have considerable 

mean and seasonal biases compared to the ground stationary 

observations. The ubRMSE is a good metric for unbiased 

evaluations through removing the seasonal and climatological 

biases. Based on the quality-controlled SCAN SM 

measurements, further validations on the six machine learning 

models are thus conducted using the ubRMSE metric (Figure 

6). The ANN, RRT, MLR and RFT present similar 

performance with showing higher ubRMSE values (>0.1 

m3/m3) in the Mississippi River areas. The CONUS domain-

averaged ubRMSEs for those 4 cases are spanning from 0.066 

m3/m3 to 0.067 m3/m3. Relatively, the GBR and XGB models 

are more successful to retrieve the AMSR2 soil moisture with 

significantly reducing the unbiased errors. On average, the 

ubRMSEs for ANN, RRT, MLR and RFT are reduced by 0.07 

m3/m3 (11.8% reduction) by the GBR and XGB methods 

(Table 1). 

V. DISCUSSION 

The goal of this paper is to select an optimal machine 

learning model to refine the NOAA AMSR2 soil moisture data 

product. Results in section 4 clearly indicate that the 

performances of the six commonly-used machine learning 

models vary significantly from each other. The evaluations are 

conducted by the reference data SMAP and the quality-

controlled SCAN SM measurements. However, the 

considerable differences between the SMAP and the AMSR2 

SM retrievals on the basis of the six approaches are found in 

the northern areas (Figure 2). Further considerations relevant 

to interpret the validation results are discussed in this section 

associated with data availability. 

Table 1. With respect to the SCAN SM observations, CONUS 

domain-averaged correlation coefficients, RMSE (m3/m3) and 

ubRMSE (m3/m3) for the six kinds of AMSR2 SM data 

products over the July 2012-December 2021 period.  

Figure 6. With respect to the quality-controlled daily SCAN soil moisture observations, ubRMSEs (m3/m3) for (a) XGB, (b) 

ANN, (c) RRT, (d) MLR, (e) RFT and (f) GBR over the July 2012-December 2021 period. 

AMSR2 SM r RMSE(m3/m3) ubRMSE(m3/m3) 

XGB 0.574 0.074 0.059 

ANN 0.395 0.086 0.066 

RRT 0.416 0.084 0.067 

MLR 0.359 0.091 0.067 

RFT 0.249 0.096 0.066 

GBR 0.553 0.076 0.059 

The NASA SMAP offers land surface SM measurements 

with near global revisit coverage in 2-3 days [37]. Given the 

time period from 2016 to 2021, the available day numbers for 

each SMAP pixel should be greater than 730 days 

(365 𝑑𝑎𝑦𝑠 × 6 𝑦𝑒𝑎𝑟𝑠 3 = 730⁄ ). However, there are a 

number of pixels in the northern study areas filled by missing 

values, resulting in low data availability that even fewer than 

50 days over the 6 years (Figure 7). For instance, compare to 

Figure 2, the higher RMSD values for the XGB model are 

basically distributed in the low spatial coverage areas. It is 
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thus expected that the XGB-based AMSR2 can yield much 

smaller RMSD values in those areas if the SMAP pixels with 

the available day numbers fewer than 100 are masked out.  

The low data availability in sub-regions also affects the 

training strategy. A straightforward way of establishing 

machine leaning model is to construct one single model for the 

entire study domain, which was conducted in this study. 

Another general training strategy is to build a machine 

learning model for a grid box (i.e., 100 km by 100 km) and 

even for each pixel [21, 31]. The low data availability of 

reference data will increase the uncertainties for the later 

clustering approaches, and will eventually result in unexcepted 

results as too few samples. The goal of this first paper of the 

two-part series is to intercompare the commonly-used machine 

learning models. Given the same inputs data, training strategy 

and reference data, the differences among the six cases are 

good metrics to investigate the model performances. 

Therefore, the inter-comparison results do not depend on the 

particular clustering technique or training strategy.  

 
Figure 7. Available day numbers for the daily NASA SMAP 

soil moisture datasets from 2016 to 2021.  

VI. SUMMARY 

This study is proposed to refine the currently operational 

NOAA AMSR2 soil moisture data products. Inter-

comparisons of the currently commonly-used machine 

learning approaches are conducted in this first paper of the 

two-part series. It offers a solid foundation of selecting an 

optimal model, which will be eventually used to operationally 

produce AMSR2 datasets in the NOAA. Results show that all 

machine learning models can preserve the reference data 

information during both of the training and testing time 

periods. This feature ensures to predict past and future satellite 

retrievals without a new training procedure. The same training 

technique, input variables and reference data highlight the 

differences among the six models as good metrics of 

measuring model behavior. The inter-comparison results thus 

do not rely on either the training strategy or the clustering 

technique. Compared to the other five models, the Extreme 

Gradient Boosting (XGB) shows a more successful 

performance with respect to the reference data SMAP and the 

uality-controlled in situ observations. This conclusion has a 

ood implication on implementing the XGB machine learning 

odel to develop the refined AMSR2 datasets in the second 

aper.  
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